A deep analysis on high‐resolution dermoscopic image classification

نویسندگان

چکیده

Convolutional neural networks (CNNs) have been broadly employed in dermoscopic image analysis, mainly as a result of the large amount data gathered by International Skin Imaging Collaboration (ISIC). As many other medical imaging domains, state-of-the-art methods take advantage architectures developed for tasks, frequently assuming full transferability between enormous sets natural images (e.g. ImageNet) and images, which is not always case. A comprehensive analysis on effectiveness deep learning techniques when applied to provided. To achieve this goal, authors consider several CNNs analyse how their performance affected size network, resolution, augmentation process, available data, model calibration. Moreover, taking performed, novel ensemble method further increase classification accuracy designed. The proposed solution achieved third best 2019 official ISIC challenge, with an 0.593.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation

The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Recognition of skin melanoma through dermoscopic image analysis

Melanoma skin cancer diagnosis can be challenging due to the similarities of the early stage symptoms with regular moles. Standardized visual parameters can be determined and characterized to suspect a melanoma cancer type. The automation of this diagnosis could have an impact in the medical field by providing a tool to support the specialists with high accuracy. The objective of this study is ...

متن کامل

Global pattern analysis and classification of dermoscopic images using textons

Detecting and classifying global dermoscopic patterns are crucial steps for detecting melanocytic lesions from non-melanocytic ones. An important stage of melanoma diagnosis uses pattern analysis methods such as 7-point check list, Menzies method etc. In this paper, we present a novel approach to investigate texture analysis and classification of 5 classes of global lesion patterns (reticular, ...

متن کامل

PolSAR Image Classification Based on Deep Convolutional Neural Network

For introducing the advantages of feature learning and multilayer network in the interpretation of Polarimetric synthetic aperture radar (PolSAR) image, a classification algorithm based on deep convolutional neural network is proposed, and is used for PolSAR image classification. Firstly, a special convolutional neural network (CNN) for PolSAR image is constructed, secondly, a large number of P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iet Computer Vision

سال: 2021

ISSN: ['1751-9632', '1751-9640']

DOI: https://doi.org/10.1049/cvi2.12048